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1. Php. A Math. Gen. 27 (1994) 5541-5549. Printed in the UK 

Infinitesimal weak symmetries of nonlinear differential 
equations in two independent variables 

A V Dzhamay and E M Vorob’evt 
Department of Applied Mathematics. MOSCOW lnstimte of Elecuonics and Mathematics. 
3/12 B Vouwvskii per., 109028 Moscow, Russia 

Received 21 September 1993, in final form 29 March 1994 

Abstract Nonclassical infinitesimal weak symmetries of PDE introduced by Olver and Rosenau 
are analysed. In the case of FQE in hvo independent variables, it is demonstrated that obtaining 
such symmetries is equivalent to obtaining the hvo-dimensional modules of non-classical partial 
symmetries. The Boussinesq and the nonlinear heat equations are heated from the point of view 
of nonclassical symmekies. 

1. Introduction 

The classical Lie symmetries provide a rich variety of methods for analysing and solving 
differential equations. One can try to obtain invariant, partially invariant solutions and 
conservation laws to perform a group foliation, to transform a given nonlinear system to a 
less complicated or linear system via contact transformations, etc [ 1-41, The common feature 
of these procedures is a reduction of the original problem to a simpler or well known one. 
For example, obtaining invariant solutions reduces to solving quotient differential equations 
in fewer independent variables than the original equations. In particular, these quotient 
equations might be ordinary differential or algebraic equations. For this reason. finding 
invariant solutions is the most popular application of the Lie symmetries. 

Since Sophus Lie, several new types of non-classical symmetries of differential 
equations, aimed at generalizing the concept of invariant solutions, have been proposed. We 
restrict ourselves to the class of conditional non-classical symmetries. The term ‘conditional‘ 
is explained by the fact that symmetries of a new system of differential equations are 
examined. The latter is obtained by appending additional differential equations, called side 
conditions, to the original system. 

Bluman and Cole [5 ]  considered the two-dimensional linear heat equation U ,  = uxx 
attached by the first-order differential equation which was the necessary and sufficient 
condition of invariance of the functions under a certain vector field in the space R3 of 
the variables t ,  x ,  U .  The vector field was taken to be a classical infinitesimal symmetry 
of the system. The symmetries of the Bluman and Cole type drew considerable attention 
later in [&lo]. One of the reasons of interest is their connection with the direct method 
of Clarkson and Kruskal for obtaining explicit solutions of nonlinear differential equations 
[Il-141. Specifically, all known solutions obtained by the direct method are invariant under 
the non-classical conditional symmebies [15]. 
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The Bluman and Cole approach was generalized in [16,17], where involutive modules 
of  vector fields of contact infinitesimal symmetries were considered. They were called 
partial symmetries. It was demonstrated that the modules of partial symmetries were closely 
related to the differential substitutions of the Hopf-Cole type, the Bikklund transformations, 
functionally invariant solutions of Smirnov and Sobolev, and so on. Note also that in [16] 
the side conditions selecting the class of partially invariant solutions and corresponding 
non-classical symmetries were constructed. Fushchich et a[ [18] proposed associating 
to differential equations admitting the classical symmetry groups additional differential 
equations which were differential invariants of the classical Lie symmetry group and which 
were compatible with the original equations, and to find the classical Lie symmetries of 
the associated system. It is evident that in general the group thus obtained is an extension 
of the classical group of the original differential equation. Olver and Rosenau (19,201 
considered a new type of non-classical symmetries. Their weak symmetries were defined 
as groups'G of transformations such that G-invariant solutions could be obtained from the 
reduced equations in fewer independent variables. Several examples of oneparameter weak 
symmetry groups and of the corresponding invariant solutions were given in [19,20]. It is 
clear that the proposed non-classical symmetries need further investigation. In particular, 
their interrelationship, scopes of  applicability, and connection to the classical Lie symmetries 
are of  great interest. 

The present paper is mainly devoted to weak and partial symmetries. In section 2 
elements of theory of partial symmetries for differential equations in one unknown function 
is developed. Theorem 3 of section 3 demonstrates that obtaining weak symmetries for 
differential equations in two independent variables is equivalent in a generic case to 
obtaining two-dimensional modules of  partial symmehies, which is much easier. Partial 
symmetries and corresponding invariant solutions of the family of nonlinear heat equations 
are considered in section 4. Section 5 reveals that there are some interesting special cases, 
where finding weak symmetries does not fall under theorem 3 of the paper. 

2. Non-classical partial symmetries 

In 116,171 partial symmetries were developed for systems of  differential equations. The 
differential equations in one unknown function need separate consideration (given below), 
since, by the B&kIund theorem, the structure of  contact transformations depends on the 
n p b e r  (one or more) of unknown functions. Therefore, we consider a nonlinear differential 
kth-order equation 

(1) 

for the real-valued function u( t ,  x). In (1) t and x are independent variables, U is a dependent 
variable, p is a set of symbols of partial derivatives pc of the function u(t,  x) of orders 
1 < lul < k. Here U = ( i l ,  iz) is a multi-index, 1u1 = il + iz. and the variable p .  
corresponds to the partial derivative al'lu(t,x)/at' laxil.  The variables t ,  x ,  U and p are 
regarded as coordinates of points belonging to the space J k ( R 3 ) ,  where R3 consists of the 
points ( t ,  x ,  U). Let f ( t .  x ,  U, p:.  p x )  be an arbitrary smooth function defined on J ' ( R 3 )  
with p: p ( l , ~ ,  px  p(0.1). Consider the contact vector field 

Act, X ,  U, P )  = 0 

on the space J ' ( R 3 ) .  The function f is called a charucreristicfunctioion of the vector field X,. 
The vector field X, is a classical infinitesimal (tangent) symmetry of equation (I), treated 
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as a hypersurface E A  in J k ( R 3 ) ,  if E A  is an invariant submanifold under the prolongation 
XF’ of the vector field X f  to the space J k ( R 3 ) .  The relation X F ’ ( A ) ( t , x ,  U, p)  = 
A ( t , x ,  u , p ) A ( r , x ,  u , p )  serves as an infinitesimal criterion of the invariance with some 
function A @ ,  x ,  U ,  p)  on J k ( R 3 )  [1-4]. 

The functions U = u ( t , x )  invariant under X f  are the only functions satisfying the 
following first-order differential equation: 

f ( t  , x ,  U ,  PI, Px) = 0. (3) 

Denote by Er a submanifold of J’(R’) determined by equation (3), and denote by E:) its 
prolongation to J k ( R 3 ) .  The submanifold E?) is given by (3) and by the equations 

D p ( f ) = O  I ~ l < k - l  (4) 

appended to (3), where p = ( j , ,  j z )  is a multi-index, D,  = D,’l o D:, 

D, = a t  + plau + . . . + pc+l,ap., + . . . 
= ax + pxau + . . . + p.,+l.apo + . . . 

are operators of variational derivatives, and U + 1, is the multi-index obtained from U by 
adding unity to its j th  component. It is easy to check that the vector field X f  is tangent to 
E,, and X,? is tangent to E;). 

Below we assume that the rank l l f , ,  f, I[ = 1. The vector field X f  is known as a non- 
classical partid symmetry of equation (1) if x?) is tangent to the intersection n E:). 
In the case when f is linear in the variables p , ,  pI or, in other words, in the case when X f  
is obtained by prolongation from R3, the symmetries just defined were introduced in [5 ] .  
The infinitesimal criterion for XI to be the partial symmetry is the relation 

X Y ) ( A ) ( ~ , ~ , ~ . P )  = A ( t , x , u , p ) A ( t , x , u , p ) +  B , ( t , x , u , p ) D p ( f )  
o <  IPI <!f - 1 

where A, Bp are some functions on J k ( R 3 ) .  

Theorem 1. Let X f  be an infinitesimal partial symmetry of equation (1); then for each 
function f ,  which regularly determines the submanifold E,, the vector field Xi is also an 
infinitesimal partial symmetry. Further, if f”= gf, then X ‘ ?  w = g X f  ( k )  . 

Proof. The vector field X ,  given by formula (2) may be rewritten in the form 

f E l  

X f = - f p , D t  - fp ,Dx+fau+D~(f )ap l+D=(f )ap~ (6) 

where D, = at + p t a u  and Dx = ax + p,au. Its prolongation to J k ( R 3 )  may be given by 
the formula 

(7) 

with Dp given by formulae (5). The assertion of the theorem follows immediately from 
0 

(k) - x X f  - I +  Dp(f)aPp I d  S k  

(6), (7h (3) and (4). 
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Corollary. If the relation rank 11 fp,, f, 11 = 1 is valid, the characteristic function of the 
infinitesimal partial symmetry can be chosen in the form f = -pi + a @ ,  x ,  U ,  px) or in the 
form f = - ~ r + b ( Z , x , u , p t ) .  

A V Dzhamay and E M  Vorob’av 

For the partial infinitesimal symmetry X j ,  the problem of obtaining the solution of 
equation (1) invariant with respect to X j  reduces to the solution of an ODE, provided the 
intersection E A  n E?) is non-empty. This reduction is based on the fact that each solution 
U = u(t ,  x )  of equation (3 )  is invariant under X j .  Therefore, it is uniquely determined by its 
values u(s)  = u(a(s) ,  on the curve y : t = a(s),  x = @(s) such that one can express 
the derivatives ut, ux on y through $(s) from the equations ~(s) = U&) + u,s(s) and 
from (3) restricted to y .  In that case X j  is said to be transversal to y .  If the function u(s)  
satisfies the quotient equation which is one of the equations of the restriction of E A  r l  E?) 
on y. then a unique solution of the Cauchy problem for equation (3) with v(s )  as an initial 
datum simultaneously satisfies equation (1) [ 1 7 ] .  

Now let us consider a pair of contact vector fields X j  and X ,  with functionally 
independent characteristic functions f and g and try to figure out when the reduction 
of equation (1) to an algebraic equation is possible for obtaining solutions invariant under 
X j  and X, .  Let E/, ,  be a submanifold determined by the pair of equations 

f ( t , x , u , p r , p x ) = O  g(t *x ,u9P, ,Px)  = o  (8) 

satisfied by functions invariant under X j  and X , .  It is well known [21] that system (8) is 
compatible, provided we have the relation 

(f3g)IE,,a = 0 (9) 

where (f, g) is the Lagrangian bracket of the functions f and g defined as a characteristic 
function of the contact vector field [ X j ,  X , ] ,  i.e. [ X j .  X , ]  = X(j , , ) .  If relation (9) is 
satisfied, then it follows from X j ( f )  = f. f ,  X&) = (f, g) + fu ’g  that the vector field 
X j  as well as X ,  is tangent to the submanifold Ej,,. 

Suppose h is a smooth function defined on J ’ ( R 3 ) ,  which annihilates on E/,, ,  then h 
can be presented in the form h = af + bg with a, b being some functions on J ’ ( R 3 ) .  
Therefore, the vector field x h  = ax ,  + bX, + f X .  t gX, - hau restricted to Ef, ,  is 
truncated to the modular combination x h  = ax,  + b X ,  of the vector fields X j  and X, .  
This implies that x h  is tangent to E/,$.  These considerations yield the following assertion. 

Theorem 2 .  Let X j  and X ,  be vector fields whose characteristic functions are functionally 
independent and satisfy relation (9); then the restrictions of the vector fields X?’ and X P )  
to E!; generate an involutive module g of vector fields on E!:. If the relation 

is satisfied, then the functions f and g may be taken in the form f = -p, + a ( t ,  x ,  U). 
g = -px + b(t, x ,  U). 

Let us say that the vector fields X f  and X, ,  satisfying the conditions of theorem 2, 
generate the two-dimensional module of partial symmetries of equation (1) if Xf”’ and Xik) 
are tangent to the intersection $1 n E A .  
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3. Weak symmetries 

In [19,20] the concept of non-classical weak symmetry of differential equations was 
introduced. We propose to treat infinitesimal weak symmetries corresponding to one- 
parameter groups as follows. Consider the contact vector field X,. the function 
r(t, x. U ,  p)  = X F ) ( A ) ( r ,  x .  U ,  p). and the system W of differential equations 

A = O  r=o  f = o .  (10) 

Definition. The vator  field X J  is an infinitesimal weak symmetry of equation (1) if 
(i) X ,  is a classical infinitesimal symmetry of system (lo), 
(ii) system (10) is compatible. 

Property (i) can be reformulated by saying that X ,  is a partial infinitesimal symmetry 
of the system A = 0, r = 0. Property (ii) means that system (10) implies no extra 
compatibility conditions that may arise by cross differentiation of the equations of system 
(10) and their differential consequences. Since r = X ! ) ( A )  and X,(f) = f. . f, the 
criterion that X, is tangent to W takes the form 

x ( r ) l ,  = 0. (11) 

An example of infinitesimal weak symmetry of the Boussinesq equation given in [ 191 admits 
a natural intepretation in the framework of the above definition. 

Example. Consider the Boussinesq equation 

A 3 ~ u r x x r  + B(uZhz + uxx - ~ r t  = 0 (12) 

and the contact vector field X, with characteristic function f = -pl + Zctp,, where c is a 
real parameter: 

x, = at - m a x  + zcp,apt. (13) 

(4) It is easy to see that r X ,  ( A )  = -4cp,, so X ,  is not a classical symmetry of 
equation (12) because the relation ptr = 0 does not follow from (12). Since equation (3) 
for the functions invariant under X y  is pt - 2ctp, = 0, and since its prolongation to J2(R3)  
is determined by 

PI - Zctp, = 0 prr - 2ctplx = 2cp, PIX - 2CPn = 0 (14) 

the relation ptr = 0 is not a consequence of (12) and (14). This means that X, is not 
a partial symmetry of the Boussinesq equation. At the same time, Xr (r) = -8c2p,. 
Therefore, the latter function vanishes on the submanifold determined by (12), (14) and 
r = 0. So the vector field considered satisfies the property (i) of ow definition of the 
infinitesimal weak symmetry for (12). 

Analysing the compatibility of system (10) in the case of the Bousssinesq equation, we 
immediately get from equations (12), from r -4cp, = 0, and from (14) that solutions 
of (12) invariant under the vector field (13) satisfy the following compatible system of 
equations: 

(2) 

C 2C2t  
u t = - .  

= s B 
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Each of these equations can be treated as a reduced equation. Indeed, from the first equation 
of (15) one can find that U = (c /@)x + g(t) ,  and &r substituting this expression into the 
second equation of system (15) one obtains thc reduced equation for the function g(r): 

A V Dzhamay and E M  Vorob'ev 

2c2t 
g ( t )  = -. B 

Thus we obtain the solution U = (c /@)x + (c2r2)/@ + CO of the Boussinesq equation 

Theorem 3. Suppose that the vector field Xf is an infinitesimal weak symmetry of 
equation (1) and is neither a classical nor a partial symmetry of that equation, and suppose 
that its characteristic function satisfies the relation: rank 11 fp,, f ,  11 = 1. Suppose also that 
Xf-invariant solutions generate at least a one-parameter family of solutions. Then there 
exists a two-dimensional module g of partial symmetries of equation (1) such that each 
Xf-invariant solution is ginvariant; besides, the relation Eg (k) E,, = E:) is valid, where 
Eg is the submanifold of g-invariant solutions given by equations of the form (8). 

Proof. To begin with, consider second-order equation (1). In the case of two independent 
variables, one can express one of the first derivatives, say pI. through the variables f, x ,  U ,  

px from equation (3). Quite similarly, the variables pIl. prX are functions of the variables r. 
x ,  U. px, pxx. If the equation r = 0 is a first-order differential equation, then all derivatives 
can be found in terms o f t ,  x and U. Specifically, 

~ t = a ( t , x , u )  p z = b ( t , x , u ) .  (16) 

If the equation r = 0 is a second-order equation, then we come to (16) using both equations 
A = 0 and r = 0. This means that system (IO) is equivalent to a first-order system as far 
as the families of their solutions are concerned. Since Xf-invariant solutions form at least a 
one-parameter family, only two of the three equations (IO) are independent. Thus, we may 
consider only equations (16). The compatibility condition for (16) is (9); consequently, the 
charactenstic functions g = -pt + a(r, x ,  U) and h = -px + b(r, x .  U) generate a two- 
dimensional module of partial symmetries of equation (I), since, in the case considered, 

In the general case of kth-order (k > 3) differential equations for each 1u1 = I , .  . . , k, 
all partial derivatives pm except one, say pee, can be expressed through the coordinates of 
the space J'"'-'(R3) and through pro with the help of the equations of the submanifold 
E:). Then the equations A = 0. r = 0 allow the order of system (10) to be diminished 
progressively by at least two at each step. After that, the proof is continued as in the case 
k = 2 .  0 

The theorem just proved means that obtaining vector fields of weak symmetries is 
equivalent in general to finding the two-dimensional modules of the partial symmetries. 
Our calculations show that the latter problem is essentially simpler than the first one. 

. .  

E @ ) c I E , = E ~ .  (2) 
g 

4. Two-dimensional modules of partial symmetries for nonlinear heat equations 

Consider the problem of finding the two-dimensional modules g = L(Xf, X,) of partial 
symmetries for the family of nonlinear heat equations 

Ut = (.(U)UX), + @(U). (17) 
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By theorem 2, the characteristic functions of the basic vector fields X, and X, can be 
taken in the form f = -pr + a @ .  x .  U) and g = -px + b( f ,  x ,  U), and equations (8) can 
be transformed to (16). The functions a ( t , x , u )  and b ( t , x , u )  in (16) must satisfy the 
compatibility condition 

a, +a,b = bl + b.a. (18) 

Besides, in order that (16) and (17) admit a one-parameter family of solutions, equation (17) 
must be a differential corollary of (16). This implies the following relation: 

a = a(bx + b.6) + a'b2 + p.  (19) 

If we substitute the function a( t ,x ,  U) given by (19) into equation (18). we obtain the 
equation 

bt = a(bxx + 2bb, + b'b..) + a'(3bbx + 2b'b.) + a"b3 + bB' - Bb. (20) 

for the function b( t , x ,  U). 
Consider the following problem: for what functions a(u )  and p(u) does equation (20) 

admit solutions of the form b(t, x ,  U) = e(t)H(u)? To answer this question, substitute the 
function b(t, U )  given by the latter relation into (20). We get 

8 0 )  = e ( t ) 3 ~ ( ~ ) ~ ~ ( n ~ ~ ~ t i ~ ~ "  + e ( t ) H ( U ) ( p ( U ) / H ( U ) ) '  

which yields the relations 

H(u)(&)H(u))" = A  H(u)(B(u) /H(u)) '  = CL (21) 

with A and /* constants. Given the function H(u) ,  equations (21) can be solved for a ( u )  
and p(u). The function b(t, U )  taken as the product O ( t ) H ( u )  implies that the invariant 
solutions u(t ,  x )  of equation (17) can be written in the form 

u ( ~ . x )  = F(e ( t ) x  +m). (22) 

in view of the second equation (16). In (22) the function e( t )  is a solution of the ordinary 
differential equation 8 = he3 + PO, which can be integrated explicitly, and the function 
@(t)  is a solution of the equation obtained after substituting (22) into either (17) or the first 
equation (16) with a( t ,  U) given by (19). For example, for H ( u )  = u-l and a(u)  = u2+u,  
p(u)  = 4 2 ,  we get the oneparmeter family of invariant solutions: 

u(t ,  x )  = J2(etx + eh + cel) 

5. Weak symmetries of the nonlinear heat equation 

Returning to the general discussion of weak symmetries, it is interesting to consider an 
example of the infinitesimal weak symmetry that admits a unique invariant solution and 
thereby does not fall under theorem 3. In what follows, the exact solutions of nonlinear 
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heat equation (23) first obtained in [221 are interpreted as invariant under weak symmetries. 
Consider the equation 

A V Dzhamay and E M Vorob’ev 

U: = uxx + U: + u2 (23) 

and its infinitesimal weak symmetry with a characteristic function f = -p ,+b(t ,  x ) ,  where 
the function b(t ,  x )  needs to be defined. Since the equations of the intersection E,, n E?) 
are equivalent to the equations 

- 
A E -pr + bx + b2 i- U’ = 0 px = b prx = bt ~ x x  = bx 

I 

the following formula is valid: r = Xf(A) = b, + bxx + Zbb, + 2ub. Therefore, if the 
function b(t ,  x )  is fixed, a unique invariant solution u( t ,  x )  is obtained from the equation 
r = 0: 

b: - bxx - 2bb, 
2b 

U ( t , X )  = 

From the above calculations we can conclude that system (10) in the case considered takes 
the form: 

The compatibility conditions for system (25) are evident: 

b: - b,, - Zbb, 8 ) = b  ax 

a t  

(26) 
-( 2b 

a (b :  - &;;- 2bbx ) = b z + b 2 + (  bt - bxx 2b - 266, 

Equations (26) admit separation of variables. Precisely, the first equation (26) is satisfied if 
b( t ,  x )  = $( t )  sinx with $ ( f )  arbitrary. Hence the second equation (25) implies the relation 

for the function @ ( t ) .  
After the function @(t) is found from (27). we get the infinitesimal weak symmetry X, 

with f(r ,  x ,  U ,  p t ,  p x )  = -px +$(t) sinx and the solution of equation (23) invariant under 
Xf is given by 

U ( t ,  x )  = - ’+’ - 4sin.x 
24 

Galaktionov obtained this solution by directly applying the method of generalized 
separation of variables in the form u ( t , x )  = O ( t )  - @(t)sinx to equation (23). Note 
that this example is analysed in [23] fiom the point of view of differential constraints. 
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